Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 869: 161833, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2211420

ABSTRACT

COVID-19 pandemic caused a significant increase in medical and infected domestic waste, greatly increasing risk of human infected with SARS-CoV-2. Therefore, it is critical to prevent the spread of SARS-CoV-2 from solid waste to humans. Current commercial disinfectants present a high carbon footprint issue. Hence, we prepared a renewable wheat straw-based bio-liquid that can damage SARS-CoV-2 RNA and protein. The wet thermochemical extraction (WTE) bio-liquid, with total organic carbon concentration exceeding 1892 mg/L, could effectively damage the virus. However, dry thermochemical extraction (DTE) samples were not efficient due to their low content of effective compounds. The life cycle assessment showed that WTE bio-liquid production implies lower energy and environmental negative impacts than DTE. Moreover, the process by-product, char, can simultaneously reduce 3.1 million tonnes of global CO2 emissions while used as coal substitute. Yield of bio-liquid extremely exceed commercial disinfectant with just 1 % wheat straw utilisation, which meet the demand of processing solid waste. Further, their costs are significantly lower than commercial disinfectants, which are suitable for developing countries. Therefore, the antiviral bio-liquid produced from agricultural straw can be a new way to meet the needs of preventing the spread of SARS-CoV-2 and resume the sustainable development of society.


Subject(s)
COVID-19 , Disinfectants , Humans , Animals , Solid Waste , SARS-CoV-2 , Biomass , Pandemics/prevention & control , RNA, Viral , COVID-19/prevention & control , Carbon Footprint , Life Cycle Stages
2.
Food Environ Virol ; 14(1): 101-104, 2022 03.
Article in English | MEDLINE | ID: covidwho-1653805

ABSTRACT

To prevent the spread of SARS-CoV-2 in cold-chain transportation in China, we developed specific cryogenic disinfectants. Carrier tests were performed against SARS-CoV-2 at - 20 °C for the four cryogenic disinfectants developed and qRT-PCR was used to test the virus RNA. Peracetic acid, chlorine disinfectants (two different concentrations), and quaternary ammonium disinfectant with their antifreeze can all inactivate SARS-CoV-2 in 5 min at - 20 °C. However, after 2-3 h of exposure, only chlorine disinfectant could destroy SARS-CoV-2 RNA. The viruses treated with peracetic acid and quaternary disinfectants showed positive Ct values even after 3 h detected with qRT-PCR. The conclusion was that the cold-chain disinfectants we tested could inactivate SARS-CoV-2 quickly and effectively, but only chlorine disinfectants could destroy nucleic acids in 3 h. Our study also illustrated that using qRT-PCR detection of viral nucleic acids to assess disinfection was inappropriate.


Subject(s)
COVID-19 , Disinfectants , COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2 , Temperature
3.
Chem Eng J ; 414: 128788, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1071137

ABSTRACT

Previous observations have been reported that viruses were inactivated using strong irradiation. Here, new evidence was disclosed by studying the effects of nanosized TiO2 on viral pathogens under a low irradiation condition (0.4 mW/cm2 at UVA band) that mimics the field setting. We showed that photo-activated TiO2 efficiently inhibits hepatitis C virus infection, and weak indoor light with intensity of 0.6 mW/cm2 at broad-spectrum wavelength and around 0.15 mW/cm2 of UVA band also lead to partial inhibition. Mechanistic studies demonstrated that hydroxyl radicals produced by photo-activated TiO2 do not destroy virion structure and contents, but attack viral RNA genome, thus inactivating the virus. Furthermore, we showed that photo-activated TiO2 inactivates a broad range of human viral pathogens, including SARS-CoV-2, a novel coronavirus responsible for the ongoing COVID-19 pandemic. In conclusion, we showed that photo-catalyzed nanosized TiO2 inactivates pathogenic viruses, paving a way to its field application in control of viral infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL